Problem Seminar, Fall 2020
 Mean Value Theorems

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function satisfying $\int_{0}^{1} f(x) \mathrm{d} x=0$. Prove that there is some $c \in(0,1)$ such that

$$
(1-c) f(c)=c \int_{0}^{c} f(x) \mathrm{d} x
$$

2. Let $f:[0,1] \rightarrow \mathbb{R}$ be twice differentiable. Suppose that the line segment joining the points $(0, f(0))$ and ($1, f(1)$) intersects the graph of f at ($a, f(a)$) for some $a \in(0,1)$. Show that there exists $c \in(0,1)$ such that $f^{\prime \prime}(c)=0$.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Show that there exist $c_{1}, c_{2} \in(a, b)$ such that

$$
\frac{f^{\prime}\left(c_{1}\right)}{a+b}=\frac{f^{\prime}\left(c_{2}\right)}{2 c_{2}} .
$$

4. Show that

$$
1-\frac{x^{2}}{2}<\cos x \text { for } x \neq 0
$$

Hint: Use Cauchy's MVT.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ twice differentiable with $f^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Show that

$$
f\left(x+f^{\prime}(x)\right) \geq f(x) \text { for all } x \in \mathbb{R} .
$$

Hint: Take three cases, $f^{\prime}(x)=0, f^{\prime}(x)<0$ and $f^{\prime}(x)>0$. For the last two cases use MVT.

