INEQUALITIES

1. CLASSICAL INEQUALITIES

(1) The Cauchy-Schwarz inequality:

(Eew) () (E%)

and integral version

(/abf(fc>g(w)dw>2§ (/abf%w)dm) (/:gwdm).

(2) Holder inequality:
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and integral version
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where %Jr%:l and p,q > 1.
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(3) Minkowski inequality
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and integral version
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(4) Jensen inequality:

f(x1+..+xn> o S @)+t f ()

n - n

if f is convex. Integral version

f(/01U(x)dx> < [

for any continuous function w, if f is convex.
(5) Young’s inequality:
a b
ab < / f (@) da:—|—/ 1 (2)dz,
0 0
if f:]0,00) = [0,00) is continuous, strictly increasing and f (0) = 0.
(6) Chebyshev inequality
(3] (o) <
k=1 k=1 k=1

if (ar), and (by), are increasing sequences. Integral version

</abf(x)dx> (/abg(x)da:> < (b—a)/abf(x)g(x)dx

if f and g are both increasing functions.

1.1. Examples using classical inequalities. Solve the following.
1. The AM-GM inequality

Yay...an, <

for all positive numbers aq, ..., G-

ay + ..+ ay
n

Proof. Use Jensen for f (x) = Inz, which is concave on (0, c0).
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2. Prove that

for any a,b > 0, where %+%=1aDdP7Q> L

Proof. Apply Young’s inequality to f (z) = 2P~1, for p > 1. O

3. Let x; € (0,7) and @ = =+ Prove that
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Proof. Taking log, we see that the statement to prove is equivalent to

1 <= sinz; sin
1 — <I .
( ) nz x; n( x )

i=1

The function f (¢) = In (224) is concave on (0, ), so by Jensen we have
@)+ + [ (2n) < ¢ <$1+-.+$n> '

n n

This implies (1). O

4. Prove that
(a1...an)™ + (b1...bn)™ < ((a1 4+ b1) ... (@p + bp))™
for any positive numbers az, .., a, and by, .., by,.

Proof. Scaling trick: the inequality to be proved does not change if we replace a;
by A;a; and b; by )\Zb“ where \; > 0.
So we may assume that
(2) a; +b;, =1,
for all i = 1,2, .,n, by simultaneously rescaling a; and b; by an appropriate \;.

Then the inequality to be proved becomes

1 ES

(@1...an)™ + (by..by)" < 1.
Using the AM-GM inequality we have

(al..an)% < a1t .. +an
n
(brby)s < af-tbo
n
so that adding up we get
(ai...a )% + (by1...b )% < (a1 +b1) + ..+ (an + by)

n
= 1
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where the second line follows from (2). O

5. Prove that
. . Ttytz
xy¥z® > (xyz)” @

for any positive numbers z,y, z.

Proof. Without loss of generality, we may assume that z < y < z. Taking log, we
see that the inequality to be proved is equivalent to

(x+y+z)(nzx+ny+Inz) <3(zlnzr+ylny+zlnz).

Sincex <y < zand Inz < Iny < In z, the above inequality follows from Chebyshev.
O

2. SOME TECHNIQUES OF PROVING INEQUALITIES

Not all new inequalities reduce to the classical ones. Sometimes we need new
ideas.

2.1. Rearrangement inequality.
Lemma 1. Ifa; <as <az and by < by < b3 then

a1x1 + a2 + azrz < arby + azby + asbs
for any permutation (x1,x9,x3) of (b1,be,bs3).

The result is true for increasing sequences of any number of terms.

1. Prove that
a n b n c >3
b+c¢c a+c a+b 2

for any a,b,c > 0.

Proof. Without loss of generality we may assume ¢ < b < ¢. Then (a,b,c) and

1 1 1 N . .
( 5o are! m) are similarly arranged, so by the rearrangement inequality,

a b c a b c
+ + > + +
b+c¢c a+c¢c a+b " a+c a+b b+ec

and also
a b c a b c

b+c+a+c+a+b_ a+b+b+c+a+c'
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Adding up these two inequalities and arranging terms on the RHS conveniently, we
conclude

a b c a c a b
2 + + > + + +
b+c a+c a+bd a+c a+c a+b a+bd

Ty (U
b+c b+ec

= 3.

This proves the inequality. O

2.2. Use of analysis. To prove an inequality, denote some expression with f and
study this function using analysis.

1. Prove that
I+z)"+(1—-2)" <2
forallm > 1 and |z| < 1.

Proof. We may assume n > 2. The function f (z) = (1 +z)" + (1 — x)" has

f'(@) = nn-1) ((1 +2)" (1 - x)n—2)
0.

Since f is convex, it achieves its maximum on [—1, 1] at one or both of the endpoints.
But f(—1) = f (1) = 2", which proves the inequality. O

2. Prove that
T1 Tn n

— + ..+
2—x 2—x,  2n-1
for any non-negative numbers 1, .., z,, so that x1 + ... + z, = 1.

Proof. Define the function f: D — R by

X x
f(x17"a'rn) = - =

2—331 ++2—.’17n
where
D ={(z1,..,xn) : ; > 0, for all i}.

We want to find the minimum of f on D, subject to the constraint 1 +...+x, = 1.
Denote

gl@)=z1+..+x, — 1.

Assume first that f achieves its minimum in the interior of D. Then according
to the Lagrange multipliers method we have

Vf=AVyg
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at a maximum point of f in D. Note that
of 2
dri (2 — ;)

so we need to solve the system

2
— = Xfori=1,2,...,n
( 2

This implies that 1 = x93 = .. = x,, at a minimum point. Plugging this into g =0
we conclude that z1 = ... = x,, = % at some minimum point in D. But note that

1 1 n
f<nn) T o -1

so in this case the inequality follows.

Let us assume now that f achieves its minimum on the boundary of D. Note
that due to the constraint g = 0, the minimum of f cannot occur at infinity. Since
(21, ..,xy) is on the boundary of D, it follows that at least one of x; is zero. Without
loss of generality we may assume x,, = 0 at the minimum point of f. Note however
that

Z1 Tn—1

f(xl,..,xn_l,O) + ..+

and 1 +.. +xp—1 = 1.

Either by an induction argument, or by continuing the argument above, we may
assume that the inequality we want to prove for n numbers is true for n—1 numbers.
So, we may assume that

C2—n 2 —Tp_1

T, T > (n—1)
2 — 1 2—xp-1  2(n-—-1)-1
for all positive z1,..,x,_1 so that 1 + .. + x,,_1 = 1. Since

(n—1) n
2(n—1)—1 >2n—1

this proves that in fact the minimum of f cannot occur on the boundary of D. [




