
INEQUALITIES

1. Classical inequalities

(1) The Cauchy-Schwarz inequality:

(
n∑

k=1

akbk

)2

≤

(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)

and integral version(∫ b

a

f (x) g (x) dx

)2

≤

(∫ b

a

f2 (x) dx

)(∫ b

a

g2 (x) dx

)
.

(2) Hölder inequality:

∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣ ≤
(

n∑
k=1

|ak|p
) 1

p
(

n∑
k=1

|bk|q
) 1

q

and integral version∫ b

a

|f (x) g (x)| dx ≤

(∫ b

a

|f |p (x) dx

) 1
p
(∫ b

a

|g|q (x) dx

) 1
q

,

where 1
p + 1

q = 1 and p, q > 1.

(3) Minkowski inequality

(
n∑

k=1

|ak + bk|p
) 1

p

≤

(
n∑

k=1

|ak|p
) 1

p

+

(
n∑

k=1

|bk|p
) 1

p

and integral version

∫ b

a

|f (x) + g (x)|p dx ≤

(∫ b

a

|f |p (x) dx

) 1
p

+

(∫ b

a

|g|p (x) dx

) 1
p

.
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(4) Jensen inequality:

f

(
x1 + ..+ xn

n

)
≤ f (x1) + ..+ f (xn)

n

if f is convex. Integral version

f

(∫ 1

0

u (x) dx

)
≤
∫ 1

0

f (u (x)) dx,

for any continuous function u, if f is convex.

(5) Young’s inequality:

ab ≤
∫ a

0

f (x) dx+

∫ b

0

f−1 (x) dx,

if f : [0,∞)→ [0,∞) is continuous, strictly increasing and f (0) = 0.

(6) Chebyshev inequality

(
n∑

k=1

ak

)(
n∑

k=1

bk

)
≤ n

n∑
k=1

akbk

if (ak)k and (bk)k are increasing sequences. Integral version

(∫ b

a

f (x) dx

)(∫ b

a

g (x) dx

)
≤ (b− a)

∫ b

a

f (x) g (x) dx

if f and g are both increasing functions.

1.1. Examples using classical inequalities. Solve the following.

1. The AM-GM inequality

n
√
a1...an ≤

a1 + ..+ an
n

for all positive numbers a1, ..., an.

Proof. Use Jensen for f (x) = lnx, which is concave on (0,∞). �
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2. Prove that

ab ≤ ap

p
+
bq

q

for any a, b > 0, where 1
p + 1

q = 1 and p, q > 1.

Proof. Apply Young’s inequality to f (x) = xp−1, for p > 1. �

3. Let xi ∈ (0, π) and x = x1+...+xn

n . Prove that

n∏
i=1

sinxi
xi
≤
(

sinx

x

)n

.

Proof. Taking log, we see that the statement to prove is equivalent to

(1)
1

n

n∑
i=1

sinxi
xi
≤ ln

(
sinx

x

)
.

The function f (t) = ln
(
sin t
t

)
is concave on (0, π), so by Jensen we have

f (x1) + ..+ f (xn)

n
≤ f

(
x1 + ..+ xn

n

)
.

This implies (1). �

4. Prove that

(a1...an)
1
n + (b1...bn)

1
n ≤ ((a1 + b1) ... (an + bn))

1
n

for any positive numbers a1, .., an and b1, .., bn.

Proof. Scaling trick: the inequality to be proved does not change if we replace ai
by λiai and bi by λibi, where λi > 0.

So we may assume that

(2) ai + bi = 1,

for all i = 1, 2, ., n, by simultaneously rescaling ai and bi by an appropriate λi.

Then the inequality to be proved becomes

(a1...an)
1
n + (b1...bn)

1
n ≤ 1.

Using the AM-GM inequality we have

(a1..an)
1
n ≤ a1 + ..+ an

n

(b1..bn)
1
n ≤ b1 + ..+ bn

n

so that adding up we get

(a1...an)
1
n + (b1...bn)

1
n ≤ (a1 + b1) + ..+ (an + bn)

n
= 1
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where the second line follows from (2). �

5. Prove that

xxyyzz ≥ (xyz)
x+y+z

3

for any positive numbers x, y , z.

Proof. Without loss of generality, we may assume that x ≤ y ≤ z. Taking log, we
see that the inequality to be proved is equivalent to

(x+ y + z) (lnx+ ln y + ln z) ≤ 3 (x lnx+ y ln y + z ln z) .

Since x ≤ y ≤ z and lnx ≤ ln y ≤ ln z, the above inequality follows from Chebyshev.
�

2. Some techniques of proving inequalities

Not all new inequalities reduce to the classical ones. Sometimes we need new
ideas.

2.1. Rearrangement inequality.

Lemma 1. If a1 ≤ a2 ≤ a3 and b1 ≤ b2 ≤ b3 then

a1x1 + a2x2 + a3x3 ≤ a1b1 + a2b2 + a3b3

for any permutation (x1, x2, x3) of (b1, b2, b3).

The result is true for increasing sequences of any number of terms.

1. Prove that
a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2

for any a, b, c > 0.

Proof. Without loss of generality we may assume a ≤ b ≤ c. Then (a, b, c) and(
1

b+c ,
1

a+c ,
1

a+b

)
are similarly arranged, so by the rearrangement inequality,

a

b+ c
+

b

a+ c
+

c

a+ b
≥ a

a+ c
+

b

a+ b
+

c

b+ c

and also
a

b+ c
+

b

a+ c
+

c

a+ b
≥ a

a+ b
+

b

b+ c
+

c

a+ c
.
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Adding up these two inequalities and arranging terms on the RHS conveniently, we
conclude

2

(
a

b+ c
+

b

a+ c
+

c

a+ b

)
≥

(
a

a+ c
+

c

a+ c

)
+

(
a

a+ b
+

b

a+ b

)
+

(
b

b+ c
+

c

b+ c

)
= 3.

This proves the inequality. �

2.2. Use of analysis. To prove an inequality, denote some expression with f and
study this function using analysis.

1. Prove that

(1 + x)
n

+ (1− x)
n ≤ 2n

for all n ≥ 1 and |x| ≤ 1.

Proof. We may assume n ≥ 2. The function f (x) = (1 + x)
n

+ (1− x)
n

has

f ′′ (x) = n (n− 1)
(

(1 + x)
n−2

+ (1− x)
n−2
)

> 0.

Since f is convex, it achieves its maximum on [−1, 1] at one or both of the endpoints.
But f (−1) = f (1) = 2n, which proves the inequality. �

2. Prove that
x1

2− x1
+ ..+

xn
2− xn

≥ n

2n− 1

for any non-negative numbers x1, .., xn so that x1 + ...+ xn = 1.

Proof. Define the function f : D → R by

f (x1, .., xn) =
x1

2− x1
+ ..+

xn
2− xn

where

D = {(x1, .., xn) : xi ≥ 0, for all i} .
We want to find the minimum of f on D, subject to the constraint x1 + ...+xn = 1.
Denote

g (x) = x1 + ...+ xn − 1.

Assume first that f achieves its minimum in the interior of D. Then according
to the Lagrange multipliers method we have

∇f = λ∇g
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at a maximum point of f in D. Note that

∂f

∂xi
=

2

(2− xi)2
,

so we need to solve the system{
2

(2− xi)2
= λ for i = 1, 2, .., n

This implies that x1 = x2 = .. = xn at a minimum point. Plugging this into g = 0
we conclude that x1 = ... = xn = 1

n at some minimum point in D. But note that

f

(
1

n
, ..,

1

n

)
=

n

2n− 1
,

so in this case the inequality follows.

Let us assume now that f achieves its minimum on the boundary of D. Note
that due to the constraint g = 0, the minimum of f cannot occur at infinity. Since
(x1, .., xn) is on the boundary of D, it follows that at least one of xi is zero. Without
loss of generality we may assume xn = 0 at the minimum point of f . Note however
that

f (x1, .., xn−1, 0) =
x1

2− x1
+ ..+

xn−1
2− xn−1

,

and x1 + ..+ xn−1 = 1.
Either by an induction argument, or by continuing the argument above, we may

assume that the inequality we want to prove for n numbers is true for n−1 numbers.
So, we may assume that

x1
2− x1

+ ..+
xn−1

2− xn−1
≥ (n− 1)

2 (n− 1)− 1

for all positive x1, .., xn−1 so that x1 + ..+ xn−1 = 1. Since

(n− 1)

2 (n− 1)− 1
>

n

2n− 1

this proves that in fact the minimum of f cannot occur on the boundary of D. �


