Math 3794, Practice Problems

Quadratic Polynomials, Fall 2020

Problem 1. Does there exist a quadratic polynomial $p(x)$ such that two of its coefficients are integers and

$$
p\left(\frac{1}{2020}\right)=\frac{1}{2021}, \quad p\left(\frac{1}{2021}\right)=\frac{1}{2020} ?
$$

Problem 2. The monic quadratic polynomial $p(x)$ has exactly one real root and the equation

$$
p(2 x-3)+p(3 x+1)=0
$$

also has only one real root. Find the polynomial $p(x)$.
Problem 3. Given the quadratic polynomials $p_{1}(x), p_{2}(x), \ldots, p_{100}(x)$ with the same coefficients of x^{2} and x but with different constant terms. Each of the polynomials has two real roots. For each polynomial $p_{i}(x)$ one root is denoted by x_{i}. What values can the sum below have:

$$
p_{1}\left(x_{100}\right)+p_{2}\left(x_{1}\right)+p_{3}\left(x_{2}\right)+\cdots+p_{100}\left(x_{99}\right) ?
$$

Problem 4. Prove that for any positive integer n the polynomial

$$
(x+1)^{2 n+1}+x^{n+2}
$$

is divisible by $x^{2}+x+1$.
Problem 5. If z and t are the roots of the polynomial $x^{2}+2 x+4=0$, compute the value of

$$
(z+t)^{7}-z^{7}-t^{7}
$$

Problem 6. Let a be a real nonzero number. Prove that for the roots z and t of the polynomial

$$
x^{2}+a x-\frac{1}{2 a^{2}},
$$

we have that

$$
z^{4}+t^{4} \geq 2+\sqrt{2}
$$

