LINEAR ALGEBRA PRACTICE SET

1. Compute the determinant

$$D = \left| \begin{array}{cccccc} 1 + a_1 & a_2 & a_3 & \dots & a_n \\ a_1 & 1 + a_2 & a_3 & \dots & a_n \\ & \dots & \dots & \dots & \dots \\ a_1 & a_2 & a_3 & \dots & 1 + a_n \end{array} \right|.$$

2. Compute the following determinant (a, b are arbitrary)

$$D_{2n} = \begin{vmatrix} a & 0 & 0 & \dots & 0 & b \\ 0 & a & 0 & \dots & b & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ b & 0 & 0 & \dots & 0 & a \end{vmatrix},$$

where the size of the matrix is $2n \times 2n$.

- 3. Let A be a $n \times n$ matrix, where n is odd. Prove that $\det(A A^t) = 0$.
- 4. Let A be an $n \times n$ matrix such that $A^3 = A + I_n$. Prove that $A + I_n$ is invertible.
 - 5. Let A be a 2×2 matrix so that $tr(A) = tr(A^2) = 0$. Prove that det(A) = 0.
 - 6. Let A and B be 2×2 matrices with det $A = \det B = 1$. Prove that

$$tr(AB) - tr(A)tr(B) + tr(AB^{-1}) = 0.$$

7. Let A, B be $n \times n$ matrices with real entries so that AB = BA. Prove that

$$\det\left(A^2 + B^2\right) \ge 0.$$

8. Calculate

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}^n$$
.

1