Complex numbers practice problems

Problem 1 (Diff. 1). Let *m* and *n* two integers such that each can be expressed as the sum of two perfect squares. Prove that $m \cdot n$ has this property as well. For instance $17 = 4^2 + 1^2$, $13 = 2^2 + 3^2$, and $17 \cdot 13 = 221 = 14^2 + 5^2$.

Problem 2 (Diff. 1). Let *ABCD* be a convex quadrilateral. Let $M \in [AB]$, let $N \in [BC]$, let $P \in [CD]$, and $Q \in [DA]$ such that

$$\frac{|AM|}{|MB|} = \frac{|DP|}{|PC|} = r \quad \text{and} \quad \frac{|BN|}{|NC|} = \frac{|AQ|}{|QD|} = s.$$

Let $\{O\} = MP \cap NQ$. Prove that $\frac{|QO|}{|ON|} = r$ and $\frac{|MO|}{|OP|} = s$. **Hint:** Find the complex coordinate of M in terms of those of A and B and of r.

Problem 3 (Diff. 2). Solve $z^{2019} = \bar{z}$.

Problem 4 (Diff. 2). Let ABCD be a convex quadrilateral. Let T and V be points inside the quadrilateral and U, W be points outside such that the angles UAB, TAD, VCB, WCD are all equal, and the angles UBA, VBC, WDC, TDA are all equal. Prove that UTWV is a parallelogram.

Hint: By a small letter, we denote the complex coordinate of the corresponding capital letter. Show that it is enough to prove that u + w = t + v. For a fixed r > 0 and fixed angle θ , rotating AB around A by θ and then scaling the result by r takes b to a + z(b - a).

Problem 5 (Diff. 3). Consider a regular *n*-gon which is inscribed in a circle with radius 1. What is the average of the lengths of all n(n-1)/2 chords joining different vertices of the *n*-gon?

Hint: Let $\xi = e^{\pi i/2n}$. Note that this is a 2*n*-th root of 1, not an *n*-th root of 1. Prove that $|1 - \xi^{2k}| = \frac{\xi^k - \xi^k}{2i}$.

Problem 6 (Diff. 3). Find all complex numbers z that verify

$$|z - |z + 1|| = |z + |z - 1||$$

Problem 7 (Diff. 4 (Putnam 1991, B2)). Suppose f and g are non-constant, differentiable, real-valued functions on \mathbb{R} . Furthermore, suppose that for each pair of real numbers x and y

$$f(x+y) = f(x)f(y) - g(x)g(y)$$

$$g(x+y) = f(x)g(y) + g(x)f(y)$$

If f'(0) = 0, prove that $f^{2}(x) + g^{2}(x) = 1$ for all x.

Problem 8 (Diff. 5). If z is a complex number with $|z| \leq 1$, and $\omega = e^{2\pi i/3}$, prove that

$$3 \le |z - 1| + |z - \omega| + |z - \omega^2| \le 4.$$