Complex numbers

1 Overview
Definition 1. A complez number is a pair (a,b) € R? denoted z = a + br. We also denote
a =Rz and b = &z. The set of complex numbers is denoted C.
We add complex numbers componentwise
(a,b) + (a',b") = (a+d',b+ V).
We multiply complex numbers by the weird rule
(a,b) - (a',b") = (aa’ — b, al’ + a'b),
corresponding to (a + be)(a’ + V1) = aa’ + ab's + ba’s — bY'. In particular, if we put 0 = (0,0),
and 1 = (1,0) and ¢+ = (0, 1), then
24+0=0+2=2V2z€C
z-1=1-2z=2VzeC
=1
With these operations, C forms a field: we can add, subtract, multiply, and divide by nonzero
elements. 0 and 1 are identity elements for addition and multiplication respectively.
Two complex numbers are equal iff their real parts and imaginary parts are equal.

The complex conjugate of z=a+ b is z := a — .
The length or modulus of a complex number is

2| := V2 -2 = Va2 + 12

We have z = 0 iff |z| = 0.

A complex number of form z = a + 0 -2 with a € R is called real. A complex number
z = In with b € R is called imaginary.
z is real iff 2 = 2z, and imaginary iff 2 = —Z.

We can also represent complex numbers in polar coordinates. Usually we identify a com-
plex number by its real and imaginary part, looking at them as cartesian coordinates. We
can also identify z € C by its length r = |z| and by the angle 6 between the line through z
in C and the real axis, measured counterclockwise from the real axis. Then we have

z =r(cosf +1sin ).
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From Euler’s formula

e'™ = —1 generalized to € = cosf + 1sin 6,

we also write

z=re?.

We call 6 the argument of z. It is only unique modulo 27. We have

z=re ¥,

The inverse of a nonzero complex number z = a + b = re® (so r > 0 and a, b not both 0) is

z a b 1

:W_az—l—bQ_a?quQZ:T

N |

Theorem 2 (C is algebraically closed). Any polynomial p(z) = a,z™ + ...+ ag € Clz] (or
Rlz]) with a,, # 0 decomposes uniquely up to order of factors as

p(x) =an(x—2z1) ... (z — zp).
This means that p(x) has exactly n complex roots when counted with multiplicity.

Example 3 (Roots of unity). . Let n > 1 be an integer. The n-th roots of unity are the
complex roots of ™ — 1 = 0. They are

2ms dm 2(n=1)me

fn =41, en en, ..., e n }

All roots of unity have length 1. In R? they form a regular n-gon inscribed in the unit
circle.

If w is an n-th root of unity, then w™*™ = W™ for any integer m.

The product of two n-th roots of unity is again an n-th root of unity. More generally, the
product of an n-th root of unity and an m-th root of unity is an lem(n,m)-th root of unity.

We have p,, C pi, iff n | m.

An n-th root of unity w = e2*™/" is called primitive if ged(k,n) = 1. The primitive roots

have the property that any other n-th root of unity is some power of w. This can be proved with the
Euclidean algorithm.

2m/n and consider the cyclotomic polynomial

O, () = H (z — wh).

ged(k,n) =1
1<k<n-1

Let w=e¢e

It turns out that @, (z) is a monic with integer coefficients, and irreducible in Q[z].
It is the monic polynomial of smallest possible degree with integer coefficients that has w
as root. Its roots are all the primitive n-th roots of unity. It follows that

t—1= H@d(x)

dln
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From Mobius inversion, we also get
() = [ [« — 1)/,
d|n

where
0 , if n is not squarefree

pu(n) == 1 yifn=1
(—=1)* | if n is product of k distinct primes

From these we find

Qy(z)=2—1

Oy(x) = +1

P3(z) =2+ +1

Py(z) =2 +1

bs(z) =o' +2° + 22 +2+1

Pg(z) =2 —z +1

Pr(z) =2+’ + a2t + ¥+ a4+ 1
Pg(z) =2t + 1

The degree of ®,,(x) is the number of primitive n-th roots of unity, which is the number
of multiplicatively invertible residues modulo n, which is Euler’s number

)
pln
where p ranges through the prime divisors of n.

Problem 4 (Putnam 1991, B2). Suppose f and g are non-constant, differentiable, real-valued
functions on R. Furthermore, suppose that for each pair of real numbers x and y

flz+y) = f(2)f(y) — g(x)g(y)
gz +y) = f(x)g(y) + g(x)f(y)
If /(0) = 0, prove that f?(z) + ¢*(z) =1 for all z.

Problem 5. Solve 2% + z + 1 = 0. At least find 2 roots.
There are formulas for solving degree < 4 equations though they are not pleasant.
There are no general formulas for arbitrary equations of degree 5 or higher.

Problem 6. Find closed formulas for the following
(1) Xk (1)
(i) 47 (3)-
(i) 355 ()
Problem 7. Consider a regular n-gon which is inscribed in a circle with radius 1. What is

the product of the lengths of all n(n — 1)/2 diagonals of the polygon (this includes the sides
of the n-gon)?



2 Complex numbers and Euclidean (Geometry

Problem 8. Let ABCD be a convex quadrilateral in the plane. Denote by a,b,c,d the
complex coordinates of the vertices after identifying R? ~ C. Prove that ABCD is a paral-
lelogram if and only if a + ¢ = b+ d.

Problem 9. Let AB be a segment in the plane with A, B having complex coordinates, a, b.
Let r > 0 be a positive real, and let # be an angle. What are the complex coordinates of the
point C' in the plane obtained by rotating AB by the angle # around the point A, and then
scaling the resulting segment by r?

Problem 10. Let ABCD be a convex quadrilateral. Let T and V' be points inside the
quadrilateral and U, W be points outside such that the angles UAB, TAD, VCB, WCD are
all equal, and the angles UBA, VBC, WDC, TDA are all equal. Prove that UTWYV is a
parallelogram.

Problem 11. Let A, B, C be distinct points in the plane and a, b, ¢ be their coordinates in
C. Prove that A, B, C' are collinear if and only if

Ql

c—a Cc —

b—a b—a

Problem 12. Let ABCD be a convex quadrilateral. Let M € [AB], let N € [BC], let
P € [CD], and @Q € [DA] such that

AM _ DP

B BN AQ
MB_ pPC

and N—C—Q—D—S

Let {O} = MP N NQ. Prove that g—ff =rand 49 =s.

Problem
d—b _ _

3. Let A, B,C, D be points in the plane. Prove that AC 1 BD if and only if

c—a

Ql e-\'_\
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