
Complex numbers

1 Overview

Definition 1. A complex number is a pair (a, b) ∈ R2 denoted z = a + bı. We also denote
a = <z and b = =z. The set of complex numbers is denoted C.

We add complex numbers componentwise

(a, b) + (a′, b′) = (a+ a′, b+ b′).

We multiply complex numbers by the weird rule

(a, b) · (a′, b′) = (aa′ − bb′, ab′ + a′b),

corresponding to (a+ bı)(a′ + b′ı) = aa′ + ab′ı+ ba′ı− bb′. In particular, if we put 0 = (0, 0),
and 1 = (1, 0) and ı = (0, 1), then

z + 0 = 0 + z = z ∀z ∈ C
z · 1 = 1 · z = z ∀z ∈ C
ı2 = −1

With these operations, C forms a field: we can add, subtract, multiply, and divide by nonzero
elements. 0 and 1 are identity elements for addition and multiplication respectively.

Two complex numbers are equal iff their real parts and imaginary parts are equal.

The complex conjugate of z = a+ bı is z̄ := a− bı.
The length or modulus of a complex number is

|z| :=
√
z · z̄ =

√
a2 + b2.

We have z = 0 iff |z| = 0.

A complex number of form z = a + 0 · ı with a ∈ R is called real. A complex number
z = bı with b ∈ R is called imaginary.

z is real iff z = z̄, and imaginary iff z = −z̄.

We can also represent complex numbers in polar coordinates. Usually we identify a com-
plex number by its real and imaginary part, looking at them as cartesian coordinates. We
can also identify z ∈ C by its length r = |z| and by the angle θ between the line through z
in C and the real axis, measured counterclockwise from the real axis. Then we have

z = r(cos θ + ı sin θ).
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From Euler’s formula

eiπ = −1 generalized to eiθ = cos θ + ı sin θ,

we also write
z = reıθ.

We call θ the argument of z. It is only unique modulo 2π. We have

z̄ = re−ıθ.

The inverse of a nonzero complex number z = a+ bı = reıθ (so r > 0 and a, b not both 0) is

1

z
=

z̄

|z|2
=

a

a2 + b2
− b

a2 + b2
ı =

1

r
e−ıθ.

Theorem 2 (C is algebraically closed). Any polynomial p(x) = anx
n + . . . + a0 ∈ C[x] (or

R[x]) with an 6= 0 decomposes uniquely up to order of factors as

p(x) = an(x− z1) · . . . · (x− zn).

This means that p(x) has exactly n complex roots when counted with multiplicity.

Example 3 (Roots of unity). . Let n ≥ 1 be an integer. The n-th roots of unity are the
complex roots of xn − 1 = 0. They are

µn := {1, e
2πı
n , e

4πı
n , . . . , e

2(n−1)πı
n }.

All roots of unity have length 1. In R2 they form a regular n-gon inscribed in the unit
circle.

If ω is an n-th root of unity, then ωm+n = ωm for any integer m.

The product of two n-th roots of unity is again an n-th root of unity. More generally, the
product of an n-th root of unity and an m-th root of unity is an lcm(n,m)-th root of unity.

We have µn ⊆ µm iff n | m.

An n-th root of unity ω = e2kπı/n is called primitive if gcd(k, n) = 1. The primitive roots
have the property that any other n-th root of unity is some power of ω. This can be proved with the

Euclidean algorithm.

Let ω = e2πı/n and consider the cyclotomic polynomial

Φn(x) :=
∏

gcd(k, n) = 1
1 ≤ k ≤ n− 1

(x− ωk).

It turns out that Φn(x) is a monic with integer coefficients, and irreducible in Q[x].
It is the monic polynomial of smallest possible degree with integer coefficients that has ω

as root. Its roots are all the primitive n-th roots of unity. It follows that

xn − 1 =
∏
d|n

Φd(x)
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From Möbius inversion, we also get

Φn(x) =
∏
d|n

(xd − 1)µ(n/d),

where

µ(n) :=


0 , if n is not squarefree
1 , if n = 1

(−1)k , if n is product of k distinct primes

From these we find

Φ1(x) = x− 1

Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1

Φ6(x) = x2 − x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

Φ8(x) = x4 + 1

The degree of Φn(x) is the number of primitive n-th roots of unity, which is the number
of multiplicatively invertible residues modulo n, which is Euler’s number

ϕ(n) = n ·
∏
p|n

(
1− 1

p

)
,

where p ranges through the prime divisors of n.

Problem 4 (Putnam 1991, B2). Suppose f and g are non-constant, differentiable, real-valued
functions on R. Furthermore, suppose that for each pair of real numbers x and y

f(x+ y) = f(x)f(y)− g(x)g(y)

g(x+ y) = f(x)g(y) + g(x)f(y)

If f ′(0) = 0, prove that f 2(x) + g2(x) = 1 for all x.

Problem 5. Solve z5 + z + 1 = 0. At least find 2 roots.
There are formulas for solving degree ≤ 4 equations though they are not pleasant.
There are no general formulas for arbitrary equations of degree 5 or higher.

Problem 6. Find closed formulas for the following

(i)
∑n

k=0

(
n
k

)
.

(ii)
∑bn/2c

k=0

(
n
2k

)
.

(iii)
∑bn/3c

k=0

(
n
3k

)
.

Problem 7. Consider a regular n-gon which is inscribed in a circle with radius 1. What is
the product of the lengths of all n(n− 1)/2 diagonals of the polygon (this includes the sides
of the n-gon)?

3



2 Complex numbers and Euclidean Geometry

Problem 8. Let ABCD be a convex quadrilateral in the plane. Denote by a, b, c, d the
complex coordinates of the vertices after identifying R2 ≈ C. Prove that ABCD is a paral-
lelogram if and only if a+ c = b+ d.

Problem 9. Let AB be a segment in the plane with A,B having complex coordinates, a, b.
Let r > 0 be a positive real, and let θ be an angle. What are the complex coordinates of the
point C in the plane obtained by rotating AB by the angle θ around the point A, and then
scaling the resulting segment by r?

Problem 10. Let ABCD be a convex quadrilateral. Let T and V be points inside the
quadrilateral and U,W be points outside such that the angles UAB, TAD, V CB, WCD are
all equal, and the angles UBA, V BC, WDC, TDA are all equal. Prove that UTWV is a
parallelogram.

Problem 11. Let A,B,C be distinct points in the plane and a, b, c be their coordinates in
C. Prove that A,B,C are collinear if and only if

c− a
b− a

=
c̄− ā
b̄− ā

.

Problem 12. Let ABCD be a convex quadrilateral. Let M ∈ [AB], let N ∈ [BC], let
P ∈ [CD], and Q ∈ [DA] such that

AM

MB
=
DP

PC
= r and

BN

NC
=
AQ

QD
= s.

Let {O} = MP ∩NQ. Prove that QO
ON

= r and MO
OP

= s.

Problem 13. Let A,B,C,D be points in the plane. Prove that AC ⊥ BD if and only if
d−b
c−a = − d̄−b̄

c̄−ā .
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