LINEAR ALGEBRA SET 1, DUE APRIL 29

1(2 pts). Compute

	$1 + a_1$	a_2	a_3	 a_n
D =	a_1	$1 + a_2$	a_3	 $\begin{array}{c} a_n \\ a_n \end{array}$
D =				
	a_1	a_2	a_3	 $\begin{array}{c} \dots \\ 1+a_n \end{array}$

2 (3 pts). Compute the following determinant (a, b are arbitrary)

	a	0	0		0	b	
$D_{2n} =$	0	a	0		b	0	
$D_{2n} =$	 b					b 0 a	,
	0	U	U	•••	U	a	

where the size of the matrix is $2n \times 2n$.

3 (4 pts). Let A be an $n \times n$ matrix whose entry on the *i*-th row and *j*-th column is

$$\frac{1}{\min\left(i,j\right)},$$

for all i, j = 1, ..., n. Compute det A.

4 (1 pt). Let A be a $n \times n$ matrix, where n is odd. Prove that det $(A - A^t) = 0$.

5 (2 pts). Let A be an $n \times n$ matrix such that $A^3 = A + I_n$. Prove that $A + I_n$ is invertible.

6 (2 pt). Let A be an $n \times n$ matrix whose entries are odd integers. Show that det A is divisible by 2^{n-1} .

7 (2 pt). Let A be a 2×2 matrix so that $tr(A) = tr(A^2) = 0$. Prove that det(A) = 0.

8 (1 pt). Let A and B be 2×2 matrices with det $A = \det B = 1$. Prove that $tr(AB) - tr(A)tr(B) + tr(AB^{-1}) = 0.$