Complex numbers homework
Due April 29

Problem 1 (Diff. 1). Let m and n two integers such that each can be expressed as the sum of two perfect squares. Prove that $m \cdot n$ has this property as well. For instance $17 = 4^2 + 1^2$, $13 = 2^2 + 3^2$, and $17 \cdot 13 = 221 = 14^2 + 5^2$.

Problem 2 (Diff. 1). Let $ABCD$ be a convex quadrilateral. Let $M \in [AB]$, let $N \in [BC]$, let $P \in [CD]$, and $Q \in [DA]$ such that $|AM| = |MB| = r$ and $|BN| = |NC| = s$. Let $\{O\} = MP \cap NQ$. Prove that $|QO| = |ON|$ and $|MO| = |OP| = s$.

Hint: Find the complex coordinate of M in terms of those of A and B and of r.

Problem 3 (Diff. 2). Solve $z^{2019} = \bar{z}$.

Problem 4 (Diff. 2). Let $ABCD$ be a convex quadrilateral. Let T and V be points inside the quadrilateral and U,W be points outside such that the angles UAB, TAD, VCB, WCD are all equal, and the angles UBA, VBC, WDC, TDA are all equal. Prove that $UTWV$ is a parallelogram.

Hint: By a small letter, we denote the complex coordinate of the corresponding capital letter. Show that it is enough to prove that $u + w = t + v$. For a fixed $r > 0$ and fixed angle θ, rotating AB around A by θ and then scaling the result by r takes b to $a + z(b - a)$.

Problem 5 (Diff. 3). Consider a regular n-gon which is inscribed in a circle with radius 1. What is the average of the lengths of all $(n(n - 1)/2)$ chords joining different vertices of the n-gon?

Hint: Let $\xi = e^{\pi i/2n}$. Note that this is a $2n$-th root of 1, not an n-th root of 1. Prove that $|1 - \xi^{2k}| = \frac{\xi^k - \bar{\xi}^k}{2i}$.

Problem 6 (Diff. 3). Find all complex numbers z that verify $|z - |z + 1|| = |z + |z - 1||$.

Problem 7 (Diff. 4 (Putnam 1991, B2)). Suppose f and g are non-constant, differentiable, real-valued functions on \mathbb{R}. Furthermore, suppose that for each pair of real numbers x and y

\[
\begin{align*}
f(x + y) &= f(x)f(y) - g(x)g(y) \\
g(x + y) &= f(x)g(y) + g(x)f(y)
\end{align*}
\]

If $f'(0) = 0$, prove that $f^2(x) + g^2(x) = 1$ for all x.

Problem 8 (Diff. 5). If z is a complex number with $|z| \leq 1$, and $\omega = e^{2\pi i/3}$, prove that $3 \leq |z - 1| + |z - \omega| + |z - \omega^2| \leq 4$.

1