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Idea. Starting from a sequence (an)n≥0, form the power series∑
n≥0

anx
n

Find some way to compute or understand this power series. Profit!

Example 1. Use derivation/integration and geometric sums to compute generating power series
for

(1) an = 1.

(2) an = an for some fixed a > 0.

(3) an = n.

(4) an =

{
1
n , if n > 0
C , if n = 0

(5) an = n
n+1 .

(6) an = nan.

Example 2. Use Taylor series and generating functions to compute 1 + 2 + 3 + . . . + n = n(n+1)
2 .

Hint: What does the series (1 + 2x + 3x2 + . . .) · 1
1−x generate?

Example 3. Use multiplication of generating series to compute the number of ways of combining
n total pieces of fruit to make salad if we have the following restrictions:

• The number of cherries must be even.

• The number of grapes must be a multiple of 5.

• There can be at most 3 apples.

• There can be at most 2 bananas.

Problem 4. What does Goldbach’s conjecture say about

(
∑

p prime

xp)2?
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Example 5 (#polynomialsarepowerseriestoo).

n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

Hint: The term on the right is the coefficient of xn in (x + 1)2n. Can you see the left hand side as
the coefficient of xn somewhere?

This method is particularly powerful for sequences defined by recurrences.

Example 6 (Generating Fibonacci). Consider the Fibonacci sequence

fn+2 = fn+1 + fn with f0 = 0 and f1 = 1.

We can actually compute its generating power series. Compute∑
n≥0

fnx
n

 · (1− x− x2
)
.

1

Conclude that the formula for the generating power series is∑
n≥0

fnx
n =

x

1− x− x2

We would like to actually compute the general term of this power series explicitly. The idea is to
write it as a sum of two geometric functions, similar to what you would do if I asked you to integrate
this function.

Solve 1− x− x2 = 0. Its solutions are x1,2 = ....
Write

x

1− x− x2
=

A

x− x1
+

B

x− x2
(6.1)

for some real numbers A,B that are found by clearing denominators and identifying the coefficients
of the resulting polynomials.

In our case, the equation is −x = A · (x− x2) + B · (x− x1) leading to{
−1 = A + B

0 = Ax2 + Bx1

The solutions are A = ................. and B = ...................
Work backwards now to write A

x−x1
and B

x−x2
as sums of geometric series. Conclude that

fn =
−A
x1
· 1

xn1
+
−B
x2

1

xn2
1Recall from last time the characteristic equation of the Fibonacci sequence

x2 − x− 1

It is not exactly what we work with here, but if you replace x 7→ 1
x
, then they do look more alike. This is not a

coincidence.
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Remark 7. The same idea works for all “linear” recurrences with constant coefficients

an+k = ck−1an+k−1 + . . . + c0an.

The generating power series will be of form∑
n

anx
n =

P (x)

1− ck−1x− . . .− c0xk

where P is a polynomial of degree at most k − 1.
You factor the polynomial in the denominator. Say its roots are x1, . . . , xk. They may repeat!

Write P (x)
1−ck−1x−...−c0xk as sum of fractions of form A

(x−xi)ri
, where ri is at most the number of

repetitions of xi.
For example, if k = 2 and you factor (x − x1)(x − x2) with x1 6= x2 as in the Fibonacci case,

then you only get fractions A
x−x1

and B
x−x2

as in (6.1).

But if x1 = x2, you may get fractions A
x−x1

and B
(x−x1)2

.

The final answer will look like xn = Ā 1
x1

n
+ B̄ 1

x2

n
in the first case, and xn = Ā 1

x1

n
+ nB̄ 1

x1

n
in

the second case.

Example 8. Compute ∑
n≥0

xn
n∑

k=0

(
k

n− k

)
.

By convention
(
a
b

)
= 0 when b < 0 or b > a.

Hint: Switch the sums, replace n 7→ n − k, and notice a product of two series. Reduce to a
familiar sequence.

Problem 9 (Checkers jumping problem). The xy plane is tiled with 1×1 squares – an infinite grid.
On and below the x axis, we have checkers, one in every square. At every step, you can take one
checker from a square, and jump over a horizontally or vertically adjacent checker onto an empty
square. The checker that is jumped over is removed. Prove that you may never place a checker
above the fourth line (y = 4) after finitely many moves.

Solution. We will show that we cannot reach the point P = (0, 5). If we show this, then we are
done. This is because translating the infinite board to the left or right does not change it.

Focusing on P , it is convenient to change coordinates so that it is now the origin. Now the
checkers are all on and below the line y = −5.

Assign each square (i, j) in the plane a symbol x|i|+|j|. When a checker is on it, we say that it
has that symbol. This measures the horizontal+vertical distance from P = (0, 0). We aim to get
to P , so closer and closer to P , so it makes sense to measure this distance somehow.

At every step, we lose an xn and xn+1 and gain an xn+2 or xn−1 depending on whether we
jumped away from P or towards P respectively. There is also the possibility of gaining back xn.
This happens precisely when the piece that was jumped over was on the y-axis, so the new square
is precisely as far from P as the old square.

We consider the invariant which is the sum of all the symbols on existing checkers. Let’s call
it potential. To get to P , at some point the potential has to be at least 1 = x|0|+|0|. Since we’re
aiming for a contradiction, the plan is as follows:

• Assign x a value such that the starting potential is < 1.

• Make sure that the moves never increase the potential.
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Jumping over the y-axis, subtracts some xn+1 from the potential, so if x > 0, then we’re
good with this move. The most interesting/useful move is one that gets a checker closer to P .
This subtracts xn+1 + xn − xn−1 from the potential. We ask that this value be 0, so that the
potential stays the same (in particular it doesn’t go up). The condition is x2 + x − 1 = 0. The

positive solution is x = −1+
√
5

2 . For this x, the effect of jumping away from P is subtracting
xn + xn+1 − xn+2 = xn(1 + x− x2) = xn(1 + x− (1− x)) = 2xn+1 > 0, so the potential goes down.

Since none of the moves increases potential, let’s check the starting potential. The total sum at
the start is

x5 + 3x6 + 5x7 + . . . = x5
∑
n≥0

(2n + 1)xn = x5
(

2

(1− x)2
− 1

1− x

)

= x5 · 1 + x

(1− x)2
=

x4

(1− x)2
=

(
x2

1− x

)2

= 1.

Hmmm. Seems bad, right? Is it? The problem wants us to show that P cannot be reached in
finitely many moves. Finitely many moves involve finitely many checkers. Therefore we can
remove the (infinitely many) unused checkers from the board at the start, and the potential goes
down a positive amount.
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