GRE prep questions in Analysis

1. Let \(f_n(x) = \frac{x^n}{1+x^n}, \ x \in [0, 1] \). Which of the following statements hold

(A) \(f_n \) converges pointwise to a function \(f : [0, 1] \to \mathbb{R} \).

(B) \(f_n \) converges uniformly to a function \(f : [0, 1] \to \mathbb{R} \).

(C) \[\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx. \]
2. For which \(x \) does the series

\[\sum_{n \in \mathbb{N}} \frac{n!x^{2n}}{n^n(1+x^{2n})} \]

converge?

(A) \(\{0\} \)
(B) \(\mathbb{R} \)
(C) \((-1, 1) \)
(D) \([-1, 1] \)
3. In the figure above we let \(r \) and \(s \) increase while keeping one sided fixed with length 1 and the obtuse angle fixed at 110 degrees. Then

\[
\lim_{r,s \to \infty} s - r
\]

(A) = 0,
(B) \(\in (0, 1) \),
(C) = 1,
(D) \(\in (1, \infty) \),
(E) = \(\infty \).
4. Let \(f : (-1, 4) \to \mathbb{R} \) be a continuously differentiable function such that \(f(3) = 5 \) and \(f'(x) \geq -1 \) for all \(x \in (1, 4) \). What is the greatest possible value of \(f(0) \)?

(A) 3
(B) 4
(C) 5
(D) 8
(E) 11
5. Which of the following equations has the greatest number of real solutions?

(A) $x^3 = 10 - x$
(B) $x^2 + 5x - 7 = x + 8$
(C) $7x + 5 = 1 - 3x$
(D) $e^x = x$
(E) $\sec x = e^{-x^2}$
6. Find the limit

\[\lim_{z \to 0} \frac{z^2}{z^2}, \ z \in \mathbb{C}. \]

(A) 0
(B) 1
(C) \(i\)
(D) \(\infty\)
(E) The limit does not exist.
7. Let $S \subset \mathbb{R}$. Which of the following statements is necessarily true?

(A) For all $t, s \in S$ there exists a continuous function $f : [0, 1] \to S$ such that $f(0) = s$ and $f(1) = t$.

(B) For each $x \notin S$, there exists an open set $U \subset \mathbb{R}$ such that $u \in U$ and $U \cap S = \emptyset$.

(C) \{x \in S : \text{there exists an open set } V \text{ such that } x \in V \subset S \} \text{ is an open subset of } \mathbb{R}.

(D) \{x \notin S : \text{there exists an open set } W \text{ such that } x \in W \text{ and } W \cap S = \emptyset \} \text{ is a closed set.}

(E) S is the intersection of all closed subsets of \mathbb{R} that contain S.
8. How many positive solutions does the equation \(\cos(97x) = x \) have?

(A) 1
(B) 15
(C) 31
(D) 49
(E) 0
9. Let f, g real functions such that $g(x) = \int_0^x f(y)(y - x) \, dy$. If g is three times continuously differentiable how many times continuously differentiable is f?

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
10. Let f, g be twice differentiable functions on \mathbb{R} such that $f'(x) > g'(x)$ for all $x > 0$. Which of the following does it hold for $x > 0$:

(A) $f(x) > g(x)$
(B) $f''(x) > g''(x)$
(C) $f(x) - f(0) > g(x) - g(0)$
(D) $f'(x) - f'(0) > g'(x) - g'(0)$
(E) $f''(x) - f''(0) > g''(x) - g''(0)$
11. How many continuous functions \(f : [-1, 1] \to \mathbb{R} \) do they exist such that \(f(x)^2 = x^2 \) for all \(x \in [-1, 1] \)?

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
12. Suppose that \(f \) is twice differentiable on \(\mathbb{R} \) and that \(f(0), f'(0), f''(0) < 0 \). Suppose also that \(f'' \) has the following properties

(i) It is increasing on \([0, \infty)\).
(ii) It has a unique zero at \([0, \infty)\).
(iii) It is unbounded on the interval \([0, \infty)\).

Which of the above three properties hold also for \(f' \)?

(A) \((i)\) only.
(B) \((ii)\) only.
(C) \((iii)\) only.
(D) \((ii)\) and \((iii)\) only.
(E) \((i), (ii)\) and \((iii)\)