Problem Seminar, Fall 2017-Calculus I

. (Difficulty 1) Prove that the series
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diverges.

. (Difficulty 2) Show that for all x > 1,
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. (Difficulty 3) Recall that the n-th harmonic number H,, is defined as
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Prove that
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. (Difficulty 3) Prove that the series
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converges for all m € N.

. (Difficulty 4) Determine if the series
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converges for all z € R.

. (Difficulty 4) Let f: R — R be a continuously differentiable 27-periodic function such that
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f(z)dz = 0.
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Prove that
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Hint: Use Fourier Series.

. (Difficulty 4) Let f:[0,1] — R be a continuous function such that

/01 f(a)de = /01 of(z)da.

Prove that there exists some ¢ € (0, 1) such that
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Hint: Think about the antiderivative of f.

. (Difficulty 4) Let R > 0. Find the limit
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