MATH 3974 PROBLEM SEMINAR HOMEWORK 4, DUE OCTOBER 10

- 1. (Difficulty 2) Let A be an $n \times n$ matrix such that $A^3 = A + I_n$. Prove that $A + I_n$ is invertible.
- 2. (Difficulty 2) Let A be an $n \times n$ matrix whose entries are odd integers. Show that det A is divisible by 2^{n-1} .
- 3. (Difficulty 2) Let A and B be 2×2 matrices with $\det A = \det B = 1.$ Prove that

$$tr(AB) - tr(A)tr(B) + tr(AB^{-1}) = 0.$$

- 4. (Difficulty 3) Let A be a $(2n+1)\times(2n+1)$ matrix. Prove that $\det(A-A^t)=0$.
- 5. (Difficulty 3) Let A be an $n \times n$ matrix so that $\det(A + I_n) \ge 0$. Prove that $\det(A^3 + I_n) \ge 0$ as well.
- 6. (Difficulty 3) Given two $n \times n$ matrices A and B for which AB = A + B, prove that AB = BA.
 - 7. (Difficulty 3) Prove that for any 3×3 matrices A and B we have the identity

$$\det (AB - BA) = \frac{1}{3} tr \left((AB - BA)^3 \right).$$

8. (Difficulty 3) Let A and B be 3×3 matrices with real entries such that

$$\det A = \det B = \det (A + B) = \det (A - B) = 0.$$

Prove that det(A + xB) = 0 for any real number x.

- 9. (Difficulty 3) Let A and B be two $n \times n$ matrices that do not commute and for which there exist nonzero real numbers p,q,r so that $pAB + qBA = I_n$ and $A^2 = rB^2$. Prove that p = q.
- 10. (Difficulty 4) Let A, B be $n \times n$ matrices so that $3AB 2BA = I_n$. Prove that det (AB BA) = 0.

MATH 3974 PROBLEM SEMINAR HOMEWORK 4, DUE OCTOBER 10

11. (Difficulty 4) Let A be an $n \times n$ matrix whose entry on the i-th row and j-th column is

$$\frac{1}{\min{(i,j)}},$$

for all i, j = 1, .., n. Compute $\det A$.

- 12. (Difficulty 5) Let A and B be 2×2 matrices with integer entries, such that AB = BA and $\det B = 1$. Prove that if $\det (A^3 + B^3) = 1$, then $A^2 = O$.
- 13. (Difficulty 5) Let A and B be 2×2 matrices so that $\det{(AB+BA)}\leq 0$. Prove that $\det{(A^2+B^2)}\geq 0$.