Math 3974 Problem Seminar Homework 1

Due September 19, 2017

Problem 1.1. Let $a_1 = 3$, $a_2 = 6$, $a_3 = 11$ be the first three terms of a sequence. Assume that the sequence satisfies the following iteration relation.

$$a_{n+2} = 3a_{n+1} - 2a_n - 1$$
, for $n \ge 1$.

- (1) (deg 1) Compute a_3 to a_8 (and more terms if needed) (No need to write out the computation.)
- (2) (deg 1) Think about what is the asymptotic behavior of such a sequence, and make a guess of a closed formula for a_n .
 - (3) (deg 1) Prove your guess by induction.

Problem 1.2. Let $a_1 = a_2 = 1$, $a_3 = 2$ be the first three terms of a sequence. Assume that the sequence satisfies the following iteration relation

$$\det \begin{pmatrix} a_n & a_{n+1} \\ a_{n-1} & a_n \end{pmatrix} = (-1)^{n+1}.$$

- (1) (deg 1) Compute the first several terms of the series and make a guess of what famous series is this sequence.
- (2) (deg 3) Prove that this sequence is equal to this famous sequence. (For this, you need to verify that a_n satisfies another simpler iteration relation satisfied by this famous sequence. You may use induction, by assuming that the simpler iteration holds for smaller a_n 's and then prove it for the next a_n .)

Problem 1.3. [2008-B2] Let $F_0(x) = \ln x$. For $n \ge 0$ and x > 0, let $F_{n+1}(x) = \int_0^x F_n(t) dt$. Evaluate

$$\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$$

We suggest to follow the steps below.

- (1) (deg 1) Compute by hand $F_1(x)$, $2F_2(x)$, and verify that $6F_3(x) = x^3 \ln x \frac{11}{6}x^3$. (2) (deg 2) Compute more terms of $n!F_n(x)$ and look at the difference of $n!F_n(x)$ and (n-1)1)! $f_{n-1}(x)$. Make a guess of the general formula of $F_n(x)$.
 - (3) (deg 1) Prove the general formula of $F_n(x)$ by induction.
 - (4) (deg 1) Complete the computation of the limit in this problem.

Problem 1.4 (2002-A1). Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^k-1}$ has the form $\frac{P_n(x)}{(x^k-1)^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$.

- (1) (deg 1) Get an iterative relation between $P_n(x)$ and $P_{n+1}(x)$. (Just take the derivative.)
- (2) (deg 2) Evaluate the iterative relation at x = 1. Solve the problem.

Problem 1.5 (1997-B1). Let $\{x\}$ denote the distance between the real number x and the nearest integer. For each positive integer n, evaluate

$$\sum_{m=1}^{6n-1} \min\left(\left\{\frac{m}{6n}\right\}, \left\{\frac{m}{3n}\right\}\right).$$

- (1) (deg 1) Compute this for n = 1, 2, 3 (and maybe more if needed), write out each term in
- (2) (deg 4) Stair at the sum computed in (1), and make guesses on what the general form should look like. Prove your guesses.