MATH 3974 PROBLEM SEMINAR HOMEWORK 4, DUE OCTOBER 18

1. (Difficulty 1) Let A be an $n \times n$ matrix such that $A^3 = A + I_n$. Prove that $A + I_n$ is invertible.

2. (Difficulty 1) Let A be an $n \times n$ matrix whose entries are odd integers. Show that det A is divisible by 2^{n-1} .

3. (Difficulty 1) Let A and B be 2×2 matrices with det $A = \det B = 1$. Prove that

$$tr(AB) - tr(A) tr(B) + tr(AB^{-1}) = 0.$$

4. (Difficulty 2) Let A be a $(2n+1) \times (2n+1)$ matrix. Prove that det $(A - A^t) = 0$.

5. (Difficulty 2) Let A be an $n \times n$ matrix so that det $(A + I_n) \ge 0$. Prove that det $(A^3 + I_n) \ge 0$ as well.

6. (Difficulty 2) Given two $n \times n$ matrices A and B for which AB = A + B, prove that AB = BA.

7. (Difficulty 3) Let A and B be 3×3 matrices with real entries such that

$$\det A = \det B = \det (A + B) = \det (A - B) = 0.$$

Prove that $\det(A + xB) = 0$ for any real number x.

8. (Difficulty 4) Let A and B be two $n \times n$ matrices that do not commute and for which there exist nonzero real numbers p, q, r so that $pAB + qBA = I_n$ and $A^2 = rB^2$. Prove that p = q.

9. (Difficulty 4) Let A, B be $n \times n$ matrices so that $3AB - 2BA = I_n$. Prove that det (AB - BA) = 0.

10. (Difficulty 5) Let A be an $n \times n$ matrix whose entry on the *i*-th row and *j*-th column is

$$\frac{1}{\min\left(i,j\right)},$$

for all i, j = 1, .., n. Compute det A.

2 MATH 3974 PROBLEM SEMINAR HOMEWORK 4, DUE OCTOBER 18

11. (Difficulty 5) Let $a = \frac{2\pi}{n}$. Prove that the matrix

(1	1		1
$\cos a$	$\cos 2a$		$\cos na$
		•	•
		•	
$\left(\cos\left(n-1\right)a\right)$	$\cos 2\left(n-1\right)a$		$\cos n (n-1) a /$

is invertible.

12. (Difficulty 6) Let A and B be 2×2 matrices with integer entries, such that AB = BA and det B = 1. Prove that if det $(A^3 + B^3) = 1$, then $A^2 = O$.

13. (Difficulty 6) Let A and B be 2×2 matrices so that det $(AB + BA) \le 0$. Prove that det $(A^2 + B^2) \ge 0$.