MATH 3974 PROBLEM SEMINAR HOMEWORK 3, DUE OCTOBER 4

1. (Difficulty 1) Let $f: (1,\infty) \to \mathbb{R}$ be defined by $f(x) = \ln (2x^2 - 3x + 1)$. Compute $f^{(n)}(x)$ for all x > 1.

- 2. (Difficulty 1) Compute $(f \circ f \circ \dots \circ f)(x)$ for the function f(x) = 2x + 1.
- 3. (Difficulty 2) Prove that if $a_1 \ge a_2 \ge ... \ge a_n \ge 0$ then

 $a_1^2 + 3a_2^2 + \dots + (2n-1)a_n^2 \le (a_1 + a_2 + \dots + a_n)^2.$

4. (Difficulty 2) Prove that for all $n \ge 0$, the polynomial $(X-1)^{2n+1} + (-1)^{n+1} X^{n+2}$ is divisible by $X^2 - X + 1$.

5. (Difficulty 2) Prove that $|\sin(nx)| \leq n |\sin x|$ for any real number x and positive integer n.

6. (Difficulty 3) Find all functions $f : \mathbb{R} \to \mathbb{R}$ continuous in x = 0 such that f(2x) = f(x) + x for all $x \in \mathbb{R}$.

7. (Difficulty 3) Prove that

$$\frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2} < 2.$$

8. (Difficulty 4) Show that if m > n are nonnegative integers, then

$$\int_0^\pi \cos^n\left(x\right) \cdot \cos\left(mx\right) dx = 0.$$

9. (Difficulty 5) Prove that for $n \ge 6$ the equation

$$\frac{1}{x_1^2} + \ldots + \frac{1}{x_n^2} = 1$$

has at least one solution $x_1, ..., x_n$ of positive integers.

10. (Difficulty 5) Prove that the sequence $(a_n)_{n\geq 2}$ defined by

$$a_n = \frac{n}{\sqrt[n]{n!}}$$

is increasing.

MATH 3974 PROBLEM SEMINAR HOMEWORK 3, DUE OCTOBER 4

11. (Difficulty 6) Define the sequence $(x_n)_{n\geq 1}$ by $x_1 = 1$ and for $n \geq 1$,

$$x_{n+1} = \frac{n}{x_n} + \frac{x_n}{n}.$$

Compute

 $\mathbf{2}$

$$\lim_{n \to \infty} \frac{x_n}{\sqrt{n}}.$$

12. (Difficulty 7) Let $a_0 = \frac{5}{2}$ and $a_k = a_{k-1}^2 - 2$ for $k \ge 1$. Compute

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{a_k} \right)$$

in closed form.

13. (Difficulty 7) Prove that for any $x \in (0, \pi)$, and any $n \ge 1$ the following inequality holds:

$$\frac{\sin x}{1} + \frac{\sin 2x}{2} + \dots + \frac{\sin nx}{n} > 0.$$