
SOLUTIONS TO 2016 UCONN UNDERGRADUATE CALCULUS
COMPETITION EXAM

Tuesday 22 March 2016, 6:30-8:00 p.m.

Please show enough of your work so your line of reasoning will be clear. Numerical answers
will receive no credit if they are not adequately supported. Calculators are welcome, but
unlikely to be very useful. Have fun, and good luck!

1. Double tangency. Find all quadratic polynomials p(x) = ax2 + bx+ c for which the
graphs of p and p′ are tangent to one another at the point (2, 1).

Solution. p′(x) = 2ax + b and p′′(x) = 2a. We are given that p(2) = p′(2) = 1 and
p′(2) = (p′)′(2) = p′′(2) so p′′(2) = 1. Thus 1 = 4a+2b+c = 4a+b = 2a . Successively,
2a = 1 so a = 1/2; 2 + b = 4a + b = 1 so b = −1; and 2− 2 + c = 4a + 2b + c = 1 so
c = 1 . Thus the only such polynomial is p(x) = (1/2)x2 − x+ 1 .

2. Box in a cone. A right circular cone has height 9 inches and base radius 3 inches. It
is desired to “inscribe” in it a rectangular box, one pair of opposite faces being squares.
If one of the square faces lies on the circular base of the cone and the four vertices
of the opposite square face all lie on the surface of the cone, what is the maximum
possible volume of the box, and what are the dimensions of the box for which that
maximum is achieved?

Solution. Let the height and square side of such an inscribed box be h inches and
s inches, so its volume is V = s2h in3. At height h inches from the circular base

of the cone the radius r inches of the circular cross-section is given by
r

9− h
=

3

9
, so

h = 9−3r. Also, s = r
√

2. Thus V = f(r) = (r
√

2)2(9−3r) = 2r2(9−3r) = 6(3r2−r3).
f ′(r) = 6(6r − 3r2) = 18r(2 − r), so f ′(r) = 0 if r = 0 or 2. f(0) = f(3) = 0, so the
only possible maximum for f is f(2) = 24, when r = 2 and h = 3, hence the maximum
possible volume is 24 in3, attained when the box is 3 inches high and the sides of its
square faces are 2

√
2 inches long.

3. Where have all the tangents gone? Consider the curve C whose equation is
20x2 − 12xy + y2 + 3 = 0 . Find all points P (x, y) on C such that the tangent line to
C at P passes through the point Q(0, 3).

Solution. Differentiate the given equation with respect to x, thinking of y as a

function of x with derivative y′: 40x− 12(y + xy′) + 2yy′ = 0 so y′ =
20x− 6y

6x− y
along

C. At P this derivative must equal the slope from P to Q, that is,
20x− 6y

6x− y
=
y − 3

x
.

Clearing denominators and simplifying gives 20x2−12xy+y2+18x−3y = 0. Comparing
with the equation of C, we see that 18x − 3y = 3 or y = 6x − 1. Plugging this into
the equation of C, we get 20x2 − 12x(6x − 1) + (6x − 1)2 + 3 = 0 which simplifies
to −16x2 + 4 = 0, so x = ±1/2. Thus there are two such points P : (1/2, 2) and
(−1/2,−4).



4. Sums and logarithms. For n = 1, 2, . . . let

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

3n
=

3n∑
k=n+1

1

k
.

Thus, for instance, a1 =
1

2
+

1

3
=

5

6
and a2 =

1

3
+

1

4
+

1

5
+

1

6
=

19

20
.

Compute lim
n→∞

an, or prove that this limit does not exist.

Solution. Note that

an =
2n∑
j=1

1

n+ j
=

2n∑
j=1

1

1 + j
n

· 1

n

is the (2n)th Riemann sum for the integral J =

∫ 2

0

1

1 + x
dx, so

lim
n→∞

an = J = ln (1 + x)|20 = ln 3− ln 1 = ln 3 .

5. An integral with lots of ingredients. Evaluate the definite integral

I =

∫ 0

ln
(√

3−1
2

) 1

ex + 1 + e−x
dx .

Solution. Multiply the integrand by ex/ex, substitute u = ex, manipulate, then
substitute v = (2u+ 1)/

√
3:

I =

∫ 0

ln
(√

3−1
2

) ex

(ex)2 + ex + 1
dx =

∫ 1

√
3−1
2

1

u2 + u+ 1
du =

=

∫ 1

√
3−1
2

1(
u+ 1

2

)2
+ 3

4

du =
4

3

∫ 1

√
3−1
2

1
4
3

(
u+ 1

2

)2
+ 1

du =

=
4

3

∫ 1

√
3−1
2

1(
2u+1√

3

)2
+ 1

du =
4

3

∫ √3
1

1

v2 + 1
·
√

3

2
dv =

=
2√
3

arctan v|
√
3

1 =
2√
3

(π
3
− π

4

)
=
π
√

3

18
.



6. Max-min. Find all absolute (or global) and relative (or local) maximum and mini-
mum values assumed by the function f(x, y) = x4 − 4xy + y2, and identify the points
at which they occur.

Solution. The various first-order and second-order partial derivatives of f are
fx = 4x3 − 4y, fy = −4x + 2y, fxx = 12x2, fxy = fyx = −4, fyy = 2. The critical
points occur when fx = fy = 0, that is, when y = 2x = x3. Solving for x, x(2 −
x2) = 0, so x = 0,±

√
2 and the critical points are P0 = (0, 0), P+ = (

√
2, 2
√

2), and
P− = (−

√
2,−2

√
2). The determinant of the Hessian matrix of second-order partial

derivatives of f is D = fxxfyy − fxyfyx = 24x2 − 16. Thus D(P0) = −16 < 0, so f has
a saddle point, and no extreme value, at P0. On the other hand, D(P+) = D(P−) =
32 > 0 and at both points fxx = 24 > 0, so f has at least a relative minimum value of
f(P+) = f(P−) = −4 at P+ and P−.

Are these relative minima actually absolute minima? Note that f(x, y) = (x4− 4x2) +
(2x − y)2. It is easy to check that g(x) = x4 − 4x2 has the minimum value -4 when
x = ±

√
2, so always f(x, y) = g(x) + (2x− y)2 ≥ −4 + 0 = −4. Thus the only extreme

value of f is an absolute (and relative) minimum value of -4, taken at P+ and P−.



7. Fubini number formula (Thanks to Michael Joseph for this interesting problem.)
For a nonnegative integer n, the nth Fubini number Fn is the number of possible orders
in which a race with n participants can finish (where ties are allowed). For example,
F2 = 3 because a race between A and B might result in A beating B, in B beating A, or
a tie. Another example: F3 = 13 because the possible orders of finish in a race between
A,B, and C areABC,ACB,BAC,BCA,CAB,CBA, (AB)C, (AC)B, (BC)A,A(BC),
B(AC), C(AB), (ABC) where parenthesis around several contestants indicate a tie.
The sequence of these numbers begins F0 = 1, F1 = 1, F2 = 3, F3 = 13, F4 = 75, F5 =
541.

It is a known fact (which you do not have to prove) that Fn arises in the Taylor series
expansion

1

2− ex
=
∞∑
n=0

Fn
n!
xn

which converges and is valid for − ln 2 < x < ln 2. Use this fact to develop a formula
for Fn as an infinite sum.

Solution. For − ln 2 < x < ln 2 we have 0 < ex/2 < 1, so the geometric series
expansion

1

2− ex
=

1

2
· 1

1− ex/2
=

1

2

∞∑
k=0

(
ex

2

)k
=
∞∑
k=0

ekx

2k+1

is valid. The series for the exponential function can be inserted and the order of
summation reversed; this last is legitimate because, at least for 0 < x < ln 2, all terms
are positive. Thus

1

2− ex
=
∞∑
k=0

1

2k+1

∞∑
n=0

(kx)n

n!
=
∞∑
n=0

1

n!

(
∞∑
k=0

kn

2k+1

)
xn

(with the usual convention 00 = 1). Comparing the coefficient of xn in this equation
with the equation given in the statement of the problem, we see that

Fn =
∞∑
k=0

kn

2k+1
.

For n ≥ 1 the series can begin with k = 1.

8. Going off on a tangent. Suppose that y = f(x) is a solution to the initial value

problem
dy

dx
= x2 + y2 + 1 , y(0) = 0 , valid on the interval (−δ, δ) for some positive

number δ. Show that f(x) > tanx for 0 < x < δ .

Comment: So necessarily δ ≤ π
2

. In fact, δ < π
2

.

Solution. If 0 < x < δ, f ′(t) > f(t)2 + 1 for 0 < t < x, so

x =

∫ x

0

1 dt <

∫ x

0

f ′(t)

f(t)2 + 1
dt = arctan f(t)|x0 = arctan f(x) .

Applying the tangent to both sides gives tanx < f(x) .


