Problem Seminar, Spring 2017-Calculus II

. (Difficulty 2) Show that if a, b, ¢ are positive numbers such that @ 4+ b+ ¢ = abc then
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Hint: Use convexity.

. (Difficulty 3) Let f: R — (0,+00) be a continuous function. Show that
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. (Difficulty 4) Let f :[0,1] — R be a continuous function such that fol f(z)dz = 1 and

/1(1 — f(z)e f@dz < 0.
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Show that f(z) =1 for all x € [0,1].

. (Difficulty 3) Prove that for every r > 0 the set

Vig={(z,y,2) €R®: (= f(2))” + (y — 9(2))* <7, 2 € [a, ]}
has the same volume for all continuous functions f, g : [a,b] — R.

. (Difficulty 4) Show that the integral
B
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converges.

. (Difficulty 3) Let f: R — (0,400) be a continuous 1-periodic function. Prove that
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. (Difficulty) Let F be a finite collection of open discs in R? whose union contains a set £ C R?.
Show that there exists a pairwise disjoint subcollection {D; = B(z;,r;)}"; in F such that

EC UZL:IB(LL'Z‘, 3Ti).

. (Difficulty 10+) Does there exist a continuous function f : R — R such that f(f(z)) = e for all
z € R.



