GRE Subject test preparation – Spring 2016

Topic: Abstract Algebra, Linear Algebra, Number Theory.

Linear Algebra

- Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces, and such.
- The following are equivalent for an $n \times n$ -matrix A (acting on \mathbb{R}^n)
 - -A is invertible, i.e. there exists a matrix B such that BA = I (which is equivalent to exists a matrix B such that AB = I).
 - KerA = 0, i.e. no non-zero vector $v \in \mathbb{R}^n$ such that Av = 0.
 - A is surjective, i.e. for every $w \in \mathbb{R}^n$, there exists $v \in \mathbb{R}^n$ such that Av = w.
 - $-\det A \neq 0.$
 - The columns/rows of A are linearly independent/span \mathbb{R}^n .
 - The transpose A^T is invertible.
 - -0 is not an eigenvalue of A
- Kernel/cokernel numerics. Let $f:V\to W$ be a map of finite dimensional linear spaces. Then

$$\dim V = \dim \operatorname{Ker} f + \dim(\operatorname{Im} f)$$

• Intersection numerics: if W_1 and W_2 are subspaces of a finite dimensional vector space V, then

 $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$

• Eigenvalues, Jordan blocks, and Cayley-Hamilton theorem. Let $A \in M_{n \times n}(\mathbb{C})$. Then A is similar to a Jordan normal forms, which is a block diagonal of bunch of Jordan block:

$$J_r(\lambda) := \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & \vdots & \vdots \\ 0 & 0 & \lambda & \cdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$$

- The characteristic polynomial of A is

λ

$$\prod_{\lambda \text{ eigenvalues}} (x - \lambda)^{\text{total size of } \lambda \text{-Jordan blocks}}$$

- The minimal polynomial $m_A(x)$ of A (namely, the monic polynomial of minimal degree such that $m_A(A)$) is

$$\prod_{\text{eigenvalues}} (x - \lambda)^{\text{maximal size of } \lambda \text{-Jordan blocks}}$$

- So if A satisfies a polynomial with no multiple zeros, then A is diagonal.

- Traces of A is the sum of all eigenvalues (with multiplicity). det(A)is the product of all eigenvalues (with multiplicity).

Abstract Algebra

- Basic examples of groups: cyclic groups, abelian groups, dihedral groups, $S_n, A_n.$
- All groups of prime order is cyclic.
- Z_p[×] is a cyclic group of order p − 1.
 The generators of Z_n is all the elements that are coprime to n.

Number Theory

- Modulo arithmetic
- Prime factorization

Linear Algebra

Problem 1 If V and W are 2-dimensional subspaces of \mathbb{R}^4 , what are the possible dimensions of the subspace $V \cap W$?

- (A) 1 only (B) 2 only (C) 0 and 1 only (D) 0, 1, and 2 only
- (E) 0, 1, 2, 3, and 4

Problem 2 Let A be a 2×2 -matrix for which there is a constant k such that the sum of the entries in each row and each column is k. Which of the following must be an eigenvector of A?

(I) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (II) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (III) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (A) I only (B) II only (C) III only (D) I and II only (E) I, II, and III

Problem 3 Let V be the real vector space of all real 2×3 -matrices, and let W be the real vector space of all real 4×1 column vectors. If T is a linear transformation from V onto W, what is the dimension of the subspace $\{v \in V : T(v) = 0\}$?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

Problem 4 Consider the two planes x + 3y - 2z = 7 and 2x + y - 3z = 0 in \mathbb{R}^3 . Which of the following sets is the intersection of these planes?

- (A) \emptyset
- (B) $\{(0,3,1)\}$
- (C) { $(x, y, z) : x = t, y = 3t, z = 7 2t, t \in \mathbb{R}$ }
- (D) { $(x, y, z) : x = 7t, y = 3 + t, z = 1 + 5t, t \in \mathbb{R}$ }
- (E) $\{(x, y, z) : x 2y z = -7\}$

Problem 5 Let M be a 5×5 real matrix. Exactly four of the following five conditions on M are equivalent to each other. Which of the five conditions is equivalent to NONE of the other four?

(A) For any two distinct column vectors u and v of M, the set $\{u, v\}$ is linearly independent.

(B) The homogeneous system Mx = 0 has only the trivial solution.

(C) The system of equations Mx = b has a unique solution for each real 5×1 column vector b.

(D) The determinant of M is nonzero.

(E) There exists a 5×5 real matrix N such that NM is the 5×5 identity matrix.

Problem 6 Suppose A and B are $n \times n$ invertible matrices, where n > 1, and I is the $n \times n$ identity matrix. If A and B are similar matrices, which of the following statements must be true?

I. A - 2I and B - 2I are similar matrices.

II. A and B have the same trace.

III. A^{-1} and B^{-1} are similar matrices.

(A) I only (B) II only (C) III only (D) I and III only (E) I, II, and III

Problem 7 The rank of the the matrix			$\begin{pmatrix} 1\\ 6\\ 11\\ 16\\ 21 \end{pmatrix}$	2 7 12 17 22	3 8 13 18 23	4 9 14 19 24	$5 \\ 10 \\ 15 \\ 20 \\ 25 \end{pmatrix}$	is	
(A) 1		(C) 3		$\langle \mathbf{T} \rangle$	(E) 5			,	

Problem 8 Let V be the vector space, under the usual operations, of real polynomials that are of degree at most 3. Let W be the subspace of all polynomials p(x) in V such that p(0) = p(1) = p(-1) = 0. Then dim $V + \dim W$ is

(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

Problem 9 Let $I \neq A \neq -I$, where I is the identity matrix and A is a real 2×2 matrix. If $A = A^{-1}$, then the trace of A is

(A) 2 (B) 1 (C) 0 (D) -1 (E) -2

Problem 10 For what value (or values) of m is the vector (1, 2, m, 5) a linear combination of the vectors (0, 1, 1, 1), (0, 0, 0, 1), and (1, 1, 2, 0)?

(A) For no value of m (B) -1 only (C) 1 only (D) 3 only

(E) For infinitely many values of m

Problem 11 Suppose B is a basis for a real vector space V of dimension greater than 1. Which of the following statements could be true?

- (A) The zero vector of V is an element of B.
- (B) B has a proper subset that spans V.
- (C) B is a proper subset of a linearly independent subset of V.
- (D) There is a basis for V that is disjoint from B.
- (E) One of the vectors in B is a linear combination of the other vectors in B.

Problem 12 Let *V* and *W* be 4-dimensional subspace of a 7-dimensional vector space *X*. Which of the following CANNOT be the dimension of the subspace $V \cap W$?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Problem 13 For $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 3 & 4 & 5 \\ 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$, which of the following statements

about A is FALSE?

(A) A is invertible

(B) If $x \in \mathbb{R}^5$ and Ax = x, then x = 0

(C) The last row of A^2 is $(0\ 0\ 0\ 0\ 25)$

(D) A can be transformed into 5×5 identity matrix by a sequence of elementary row operations

(E) det(A) = 120

Problem 14 Let V be a finite-dimensional real vector space and let P be a linear transformation of V such that $P^2 = P$. Which of the following must be true?

I. P is invertible

II. P is diagonalizable

III. P is either the identity transformation or the zero transformation.

(A) None (B) I only (C) II only (D) III only (E) II and III

Problem 15 Which of the following is an <u>orthonormal</u> basis for the column space of the real matrix $\begin{pmatrix} 1 & -1 & 2 & -3 \\ -1 & 1 & -3 & 2 \\ 2 & -2 & 5 & -5 \end{pmatrix}$?

$$(A) \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$$
$$(B) \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
$$(C) \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}}\\0 \end{pmatrix} \right\}$$
$$(D) \left\{ \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 2\\-3\\5 \end{pmatrix} \right\}$$
$$(E) \left\{ \begin{pmatrix} \frac{1}{\sqrt{6}}\\-\frac{1}{\sqrt{6}}\\\frac{2}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0 \end{pmatrix} \right\}$$

Problem 16 Let A be a real 3×3 . Which of the following conditions does NOT imply that A is invertible?

(A) -A is invertible

(B) There exists a positive integer k such that $det(A^k) \neq 0$

(C) There exists a positive integer such that $(I - A)^k = 0$, where I is the 3×3 identity matrix

(D) The set of all vectors of the form Av, where $v \in \mathbb{R}^3$, is \mathbb{R}^3

(E) There exists 3 linearly independent vectors $v_1, v_2, v_3 \in \mathbb{R}^3$ such that $Av_i \neq 0$ for each *i*.

Problem 17 Let A be a 2×2 matrix with characteristic polynomial $p(x) = x^2 + 2x + 1$, which of the following must be true:

(I) A has an eigenvalue

(II) If A is diagonalizable, then A is the identity matrix

(III) A is invertible

(a) I only (b) II only (c) III only (d) I and III only (e) I, II, and III.

Abstract Algebra

Problem 1 For which of the following rings is it possible for the product of two nonzero elements to be zero?

- (A) The ring of complex numbers
- (B) The ring of integers modulo 11
- (C) The ring of continuous real-valued functions on [0, 1]
- (D) The ring $\{a + b\sqrt{2} : a \text{ and } b \text{ are rational numbers}\}$
- (E) The ring of polynomials in x with real coefficients

Problem 2 Let G be the group of complex numbers $\{1, i, -1, -i\}$ under multiplication. Which of the following statements are true about the homomorphisms of G into itself?

I. $z \mapsto \bar{z}$ defines one such homomorphism, where \bar{z} denotes the complex conjugate of z.

II. $z \mapsto z^2$ defines one such homomorphism.

III. For every such homomorphism, there is an integer k such that the homomorphism has the form $z \mapsto z^k$.

(A) None (B) II only (C) I and II only (D) II and III only (E) I, II, and III

Problem 3 Up to isomorphism, how many additive abelian groups G of order 16 have the property that x + x + x + x = 0 for each x in G?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 5

Problem 4 The group of symmetries of the regular pentagram is isomorphic to the

(A) symmetric group S_5

- (B) alternating group A_5
- (C) cyclic group of order 5
- (D) cyclic group of order 10

(E) dihedral group of order 10

Problem 5 A group G in which $(ab)^2 = a^2b^2$ for all a, b in G is necessarily

(A) finite (B) cyclic (C) of order two (D) abelian (E) none of above

Problem 6 If the finite group G contains a subgroup of order seven but no element (other than the identity) is its own inverse, then the order of G could be

(A) 27 (B) 28 (C) 35 (D) 37 (E) 42

Problem 7 Which of the following is NOT a group?

(A) The integers under addition

(B) The nonzero integers under multiplication

- (C) The nonzero real numbers under multiplication
- (D) The complex numbers under addition
- (E) The nonzero complex numbers under multiplication

Problem 8 For which integer n such that $3 \le n \le 11$ is there only one group of order n (up to isomorphism)?

- (A) For no such integer n
- (B) For 3, 5, 7, and 11 only
- (C) For 3, 5, 7, 9, and 11 only
- (D) For 4, 6, 8, and 10 only
- (E) For all such integers n

Problem 9 What is the largest order of an element in the group of permutations of 5 objects?

(A) 5 (B) 6 (C) 12 (D) 15 (E) 120

Problem 10 Let R be a ring and let U and V be (two-sided) ideals of R. Which of the following must also be ideals of R?

I. $U + V = \{u + v : u \in U \text{ and } v \in V\}$ II. $U \cdot V = \{uv : u \in U \text{ and } v \in V\}$ III. $U \cap V$

(A) II only (B) III only (C) I and II only (D) I and III only (E) I, II, and III

Problem 11 Let \mathbb{Z}_{17} be the ring of integers modulo 17, and let \mathbb{Z}_{17}^{\times} be the group of units of \mathbb{Z}_{17} under multiplication. Which of the following are generators of \mathbb{Z}_{17}^{\times} ?

I. 5 II. 8 III. 16 (A) None (B) I only (C) II only (D) III only (E) I, II, and III

Problem 12 Let G_n denote the cyclic group of order n. Which of the following are not cyclic?

- (A) $G_{11} \times G_7$ (B) $G_{24} \times G_{17}$ (C) $G_{11} \times G_3 \times G_8$
- (D) $G_{11} \times G_{33}$
- (E) $G_{49} \times G_{121}$

Problem 13 How many generators does the group \mathbb{Z}_{24} have?

(A) 2 (B) 6 (C) 8 (D) 10 (E) 12

Number Theory

Problem 1 Let P_1 be the set of all primes, $2, 3, 5, 7, \ldots$, and for each integer n, let P_n be the set of all prime multiples of $n, 2n, 3n, 5n, 7n, \ldots$ Which of the following intersections is nonempty?

(A) $P_1 \cap P_{23}$ (B) $P_7 \cap P_{21}$ (C) $P_{12} \cap P_{20}$ (D) $P_{20} \cap P_{24}$ (E) $P_5 \cap P_{25}$

Problem 2 What is the units digit in the standard decimal expansion of the number 7^{25} ?

(A) 1 (B) 3 (C) 5 (D) 7 (E) 9

Problem 3 For how many positive integers k does the ordinary decimal representation of the integer k! end in exactly 99 zeros?

(A) None (B) One (C) Four (D) Five (E) Twenty-four

Problem 4 Let x and y be positive integers such that 3x + 7y is divisible by 11. Which of the following must also be divisible by 11?

(A)
$$4x + 6y$$
 (B) $x + y + 5$ (C) $9x + 4y$ (D) $4x - 9y$ (E) $x + y - 1$

Problem 5 Which of the following CANNOT be a root of a polynomial in x of the form $9x^5 + ax^3 + b$, where a and b are integers?

(A) -9 (B) -5 (C) $\frac{1}{4}$ (D) $\frac{1}{3}$ (E) 9

Problem 6 If x and y are integers that satisfies

$$3x \equiv 5 \pmod{11}$$
 $2y \equiv 7 \pmod{11}$

then x + y is congruent modulo 11 to which of the following?

(A) 1 (B) 3 (C) 5 (D) 7 (E) 9