GRE prep questions in Analysis

- 1. $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan x} dx = ?$ (a) $\pi/2$ (b) $\pi/3$ (c) $\pi/4$ (d) $\pi^{2}/2$
 - (e) $\pi^2/4$

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x+1) = f(x) for all $x \in \mathbb{R}$. Which of the following hold?
 - (i) f achieves its maximum and minimum,
 - (ii) f is uniformly continuous,
 - (iii) there exists x_0 such that $f(x_0 + \pi) = f(x_0)$
 - (iv) there exists x_1 such that $f(x_1 + 1/2) = f(x_1)$
 - (a) (i)
 - (b) (i)+(ii)
 - (c) (i)+(ii)+(iv)
 - (d) all

3. Let $f : \mathbb{R} \to \mathbb{R}$ differentiable. Then

$$\lim_{\varepsilon \to 0} \frac{3}{\varepsilon^3} \int_{-\varepsilon}^{\varepsilon} tf(x+t)dt =$$

- (a) $\frac{1}{3}f(x)$, (b) $\frac{1}{2}f'(x)$, (c) $\frac{1}{2}f''(x)$, (d) 2f'(x),
- (e) 3f''(x).

- 4. Let (X, d) be an arbitrary metric space, which of the following define a metric on X?
 - (a) 4 + d
 - (b) $e^d 1$
 - (c) d |d|
 - (d) d^2
 - (e) \sqrt{d}

5. How many linearly independent solutions does the following equation have

$$e^{-x^2}y'' + \ln(1+x^2)y' - \cos(x)y = 0.$$

(a) 0

(b) 1

(c) 2

- (d) undecidable
- (e) infinitely many

6. Evaluate

$$\int_{-\pi/4}^{\pi/4} (\cos t + \sqrt{1+t^2} \sin^3 t \cos^3 t) dt$$

(a) 0

- (b) $\sqrt{2}$
- (c) $\sqrt{2} 1$
- (d) $\sqrt{2}2$
- (e) $\frac{\sqrt{2}-1}{2}$

- 7. Decide which of the following hold:
 - (i) $\ln x \leq C\sqrt{x}$ for some constant C and $x \geq 1$,
 - (ii) $\sum_{k=1}^{n} k^2 \leq Cn^2$ for some constant C and $n \geq 1$, (iii) $|\sin x x| \leq C |x^3|$ for some constant C.

 - (a) None
 - (b) (i)+(iii)
 - (c) (iii)
 - (d) (i)
 - (e) all

8. Evaluate

$$\int_0^\infty \lfloor x \rfloor e^{-x} dx.$$

(a) $\frac{e}{e^2 - 1}$ (b) $\frac{1}{e - 1}$ (c) $\frac{e - 1}{e}$ (d) 1

- (e) $+\infty$

9. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that both limits,

$$\lim_{x \to \infty} f(x), \lim_{x \to \infty} f'(x)$$

exist and they are finite. Which of the following is true?

- (a) $\lim_{x\to\infty} f(x) = 0$
- (b) $\lim_{x\to\infty} f'(x) = 0$
- (c) $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f'(x)$
- (d) f is constant
- (e) f' is constant.

10. Let f be a continuous function on $\mathbb R.$ Which of the following hold?

- (i) f((0,1)) is connected.
- (ii) f((0, 1)) is open.
- (iii) f((0,1)) is bounded.
- (a) (i)
- (b) all of them
- (c) (i)+(ii)
- (d) (i)+(iii)
- (e) (ii)+(iii)

11. Suppose that f is a nonnegative differentiable function such that

$$\int_0^\infty f(x)dx < \infty.$$

Which of the following statements hold?

- (i) $\lim_{x\to\infty} f(x) = 0$
- (ii) $\lim_{x\to\infty} f'(x) = 0$
- (iii) For every $\varepsilon > 0$, there is an M such that $\int_M^\infty f(x) dx < \varepsilon$.
- (iv) f is bounded
- (a) (i)
- (b) (ii)+(iv)
- (c) (iii)
- (d) (ii)+(iii)+(iv)
- (e) all of them