Math 3974 Problem Seminar Homework 1

Due September 13, 2016

Problem 7.1. (Difficulty:1+2+1) Find the ordinary power series $\sum_{n\geq 0} a_n x^n$ generating functions of each of the following sequence, in simple, closed form. In each case the sequence is defined for all $n \geq 0$.

(a)
$$a_n = n^2$$

(b) $a_n - P(n)$, where P is a given polynomial, of degree m

(c)
$$a_n = 5 \cdot u^n - 3 \cdot 4^n$$
.

Problem 7.2. (Difficulty:1+1+1+1) If $f(x) = \sum_{n\geq 0} a_n x^n$ is the ordinary power series generating function of the sequence $\{a_n\}_{n\geq 0}$, then express simply, in terms of f(x), the ordinary power series generating functions of the following sequence (start with n = 0, 1, 2...)

(a)
$$\{na_n + c\}$$

(b) $\{0, 0, 1, a_3, a_4, a_5, \dots\}$
(c) $a_0, 0, a_2, 0, a_4, 0, \dots$
(d) $\{a_{n+2} - a_{n+1} - a_n\}$

Problem 7.3. (Difficulty:1) Find the x^n -coefficient of $\frac{1}{(1-ax)(1-bx)}$ where $a \neq b$.

Problem 7.4. (Difficulty:2) Find the ordinary power series generating function of the sequence

$$a_0 = 0, \ a_1 = 1, \ a_{n+2} = 3a_{n+1} - 2a_n \text{ for } n \ge 0.$$

Problem 7.5. (Difficulty:3) Let f(n) be the number of subsets of $\{1, \ldots, n\}$ that contain no two consecutive elements, for positive integer n. Find the recurrence that is satisfied by these numbers, and then give a closed formula for these numbers f(n).

Problem 7.6. (Difficulty:4) Let $x^{(n)} = x(x-1)\cdots(x-n+1)$ for *n* a positive integer, and let $x^{(0)} = 1$. Prove that

$$(x+y)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} x^{(k)} y^{(n-k)}.$$

Problem 7.7. (Difficulty:3) A function f is defined for all $n \ge 1$ by the relation

(a)
$$f(1) = 1$$

(b) $f(2n) = f(n)$
(c) $f(2n+1) = f(n) + f(n+1)$.

Let

$$F(x) = \sum_{n \ge 1} f(n) x^{n-1}$$

be the generating function of the sequence. Show that

$$F(x) = (1 + x + x^2)F(x^2),$$

and conclude that

$$F(x) = \prod_{j \ge 0} \left\{ 1 + x^{2^j} + x^{2^{j+1}} \right\}.$$

Problem 7.8. (Difficulty:7) Sum the series

$$\sum_{n \ge 1} \sum_{n \ge 1} \frac{3^{-m} m^2 n}{3^m n + 3^n m}$$